Master Python Programming (From Basic to Data Science)

Uncategorized
Wishlist Share
Share Course
Page Link
Share On Social Media

About Course

Course Title: Mastering Python Programming – From Basics to Data Science


Syllabus:

Module 1: Python Fundamentals

  1. Introduction to Python

    • History and evolution of Python

    • Features and real-world applications

  2. Installation of Python

    • Installing Python on various OS

    • Setting up environment variables

    • Installing IDEs (PyCharm, VS Code)

  3. Jupyter Notebook Overview

    • Installing Jupyter

    • Using cells, markdown, and basic operations

    • Code execution and visualization

  4. Variables, Keywords and Comments

    • Declaring and initializing variables

    • Python keywords and naming conventions

    • Writing comments and docstrings

  5. Operators in Python

    • Arithmetic, relational, logical, bitwise, assignment, and special operators

    • Operator precedence

  6. How to Take Input from User

    • input() and print() functions

    • Formatting output using format() and f-strings


Module 2: Control Flow and Data Types

  1. Conditional Statements

    • if, else, elif

    • Nested conditions and shorthand syntax

  2. Looping Statements

    • for, while loops

    • break, continue, and pass statements

  3. Data Types in Python

    • Numbers, strings, lists, tuples, dictionaries, and sets

    • Type casting and type checking


Module 3: Functions and OOPs

  1. Functions in Python

    • Defining and calling functions

    • Arguments, return values, and scope

    • *args and **kwargs

  2. Lambda Functions

    • Syntax and use cases

    • Anonymous functions in Pythonic code

  3. Decorators and Generators

    • Writing and applying decorators

    • yield, next() for generator functions

  4. Classes and Objects

    • Basics of OOP

    • __init__() method and instance variables

  5. OOPS Concept

    • Inheritance, polymorphism, encapsulation, and abstraction

    • Method overriding and super()


Module 4: File and Error Handling

  1. File Handling and Exception Handling

    • Reading and writing files

    • File modes and context manager (with)

    • try, except, finally, raise, and custom exceptions

  2. Regular Expressions

    • re module

    • Pattern matching, searching, and replacing

  3. Logging and Debugging in Python

    • Using logging module

    • Setting log levels

    • Debugging techniques

  4. Python Testing

    • Unit testing with unittest

    • Writing test cases and test suites

  5. Command Line Arguments

    • Using sys.argv

    • argparse module for advanced parsing


Module 5: Advanced Python and Data Science

  1. Databases in Python

    • Connecting with SQLite and MySQL

    • Executing queries using Python

  2. API Development in Python

    • Basics of REST APIs

    • Using Flask to build simple APIs

  3. Pydantic (Data Validation Framework)

    • Data models and schema validation

    • Type hints and data parsing

  4. Python Libraries for Data Science

    • Overview of NumPy, Pandas, Matplotlib, Seaborn

    • Basic operations and data visualization

  5. End to End Project on Data Science

    • Project problem statement

    • Data preprocessing, analysis, modeling, and visualization

    • Model evaluation and final report

  6. Important Concepts That Everyone Should Know

    • Best practices in Python

    • Code optimization and readability

    • Preparing for interviews and real-world applications

Show More

Course Content

Module 1

  • Introduction to Python
    05:33
  • Python Installation
    01:13
  • Introduction to Jupyter notebook
    03:58
  • Introduction to Variable
    04:52
  • Introduction to keyword
    01:14
  • Introduction to Comments
    01:32
  • Introduction to Operators
    14:01
  • How to take input from the user
    04:53
  • Introduction to Conditional Statement
    06:43
  • Introduction to looping statements
    07:13
  • Introduction to Zip
    01:42
  • Numbers and Strings
    17:03
  • Introduction to Array
    04:02
  • Introduction to List
    05:00
  • List Comphrension
    02:39
  • Introduction to Tuple
    03:42
  • Introduction to Dictionary
    04:36
  • Introduction to Sets
    05:56
  • Introduction to functions
    09:30
  • Types of Functions
    06:17
  • Function Overloading and Function Overriding
    03:01
  • Introduction to Lambda functions and Higher Order function
    09:13
  • Introduction to Decorators
    03:31
  • Introduction to Generators Add description
    02:39
  • Case Study How to process a large CSV files
    03:43
  • Introduction to Classes and Objects
    06:18
  • Object Oriented Programming
    21:11
  • Introduction to File Handling
    17:33
  • Introduction to Exception Handling
    00:00
  • Introduction to regular expression
    17:28
  • Project Scrapping data from websites in a simple manner
    00:00
  • Introduction to Logging
    03:19
  • Introduiction to Debugging
    00:00
  • Advanced debugging
    00:00
  • Introduction to Testing in Python
    06:27
  • Advance testing in Python
    04:24
  • Introduction to Command Line Argument
    00:00
  • SYS Library
    00:00
  • Argument Parser Library
    00:00
  • Introduction to Databases
    00:00
  • CRUD Operations in Python
    12:15
  • Indexes in Python
    00:00
  • Joins in Python
    00:00
  • Constraint in Python
    07:07
  • Introduction to API and how to create in Flask
    04:33
  • Introduction to Django
    07:54
  • How to create an API in Django
    00:00
  • Introduction to Pydantic and practical
    00:00
  • Numpy
    00:00
  • Pandas Series and DataFrames
    06:31
  • Common pandas functions
    00:00
  • Pandas plotting functions
    00:00
  • Case Study How to deal with the nested json files
    00:00
  • Matplotlib
    00:00
  • Seaborn
    00:00
  • Plotly
    00:00
  • How to automatically visualize any dataset in one line
    00:00
  • End to End Data Preprocessing Pipeline
    00:00
  • End to End Exploratory Data Preprocessing Pipeline Part 1
    16:16
  • End to End Exploratory Data Analysis Pipeline Part 2
    00:00
  • End to End Exploratory Data Analysis Pipeline Part 3
    00:00
  • Automate Data Cleaning and EDA in just 3 lines of code
    00:00

Bonus

Student Ratings & Reviews

No Review Yet
No Review Yet